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Lifetime of excitations in a clean Luttinger liquid
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Received 23 June 1998

Abstract. Non-linear band dispersion in the Luttinger model of one-dimensional interacting
electrons gives rise to collisions between the bosonic sound-like excitations. The decay rate
is calculated beyond a plain perturbation theory both atT = 0 andT 6= 0. A self-consistent
approach reveals a non-analytical dependence of the lifetime of excitations on the coupling
constant, wave vector and temperature.

The notion of a ‘Luttinger liquid’ was introduced [1] to describe the peculiar low-energy
physics of interacting fermions in one dimension [2]. Unlike the Fermi liquids in higher
dimensions, there are no single-particle excitations in 1D systems and their dynamics are
essentially collective. The basic tool of Luttinger liquid theory is the bosonization technique
[3], whose success is based on the possibility of linearization of the single-electron spectrum
in the vicinity of Fermi points. The properties of correlated fermion systems are then
described entirely in terms of free bosonic excitations with linear dispersion. The lifetime
of these excitations becomes finite if we take into account extra interactions, e.g., with
impurities or phonons. However, in a clean system without phonons the only contribution
to the damping of excitations may come from their mutual collisions. It has long been
realized [1] that such interactions originate from a non-zero band curvature, which is always
present in real systems.

Previous work has been concentrated on calculation of the damping of collective
excitations (1D plasmons) in quantum wires with Coulomb interaction, where the dispersion
law is non-linear:ω(k) ∼ k| ln k|1/2 [4]. In the random-phase approximation (RPA) [5],
the decay rate of plasmons is given by the imaginary part of the bare polarization operator
(Landau damping). However, this imaginary part is zero at the mass shell for the sound-like
excitations in the short-range case, as well as for 1D plasmons [6]. Therefore, in order to
calculate the lifetime of excitations one should either allow for impurity scattering [7], or
go beyond the RPA, the latter being equivalent to finding the corrections due to a non-zero
band curvature. Such corrections to the RPA for 1D plasmons have been calculated within
a conventional perturbation theory for realistic band spectra [4, 7, 8]. The disadvantage
of such an approach is that one has to use approximations, the validity of which in 1D
needs some justification itself. For this reason, we choose to resort to the bosonization
approach, in which the band curvature effects can be taken into account explicitly by adding
extra interaction terms to the bosonized Hamiltonian [1]. This allows one to treat all such
corrections in a systematic way. However, the task of calculating the decay rate is far from
trivial, since the perturbative analysis using the golden rule fails in the short-range case. The
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reason is that the laws of energy and momentum conservation are satisfied simultaneously
for the waves with linear dispersion, so that one would obtain an unphysical infinite decay
rate in the second-order perturbation theory. Therefore, a more accurate treatment is needed.

In this letter, we present a self-consistent calculation of the damping of the long-
wavelength excitations in a clean Luttinger liquid. To be specific, let us consider a 1D
system of spinless fermions with short-range interaction, described by the Luttinger model
[9]. The basic feature of this model is that the single-electron spectrum consists of two
branches—right (R) and left (L) ‘movers’—both with linear dispersion and unconstrained
momentum and energy. The Hamiltonian isH = H0+H ′, where

H0 = ivF

∫ L

0
dx
(
ψ
†
R(x)∂xψR(x)− ψ†L(x)∂xψL(x)

)
+ 1

2

∫ L

0
dx dx ′ ρ(x)U(x − x ′)ρ(x ′)

H ′ = − 1

2m

∫ L

0
dx
(
ψ
†
R(x)∂

2
xψR(x)+ ψ†L(x)∂2

xψL(x)
)
.

(1)

Hereρ(x) = ψ†R(x)ψR(x)+ψ†L(x)ψL(x) is the electron density operator;U(x) has a finite
rangeR in real space, its Fourier transformU(k) being equal toU0 at kR � 1. The
second term in the Hamiltonian takes account of a non-zero curvature of the single-electron
spectrumεp = vF(|p| − pF) + (|p| − pF)

2/2m near the Fermi points [1]. The fermion
operators can be written in the bosonized form:ψR(L)(x) ∼ e±ipFx−i8R(L)(x) [1, 10], where

8R(L)(x) = ±πx
L
NR(L) − i

∑
k 6=0

α(±k)
(

eikxb
†
k − e−ikxbk

)
. (2)

Hereα(k) = (2π/L|k|)1/2(θ(k) coshϕ− θ(−k) sinhϕ) (L→∞), θ(x) is the step function,
and e−4ϕ = 1+2U0/πvF. The operatorsNR(L) correspond to the number of particles added
to the right (left) branch of spectrum with respect to the ground state densityN/L = pF/π .
The operatorsb†k, bk create and annihilate non-uniform excitations and obey canonical boson
commutation relations. The HamiltonianH0 then describes free bosonic excitations with
linear dispersionω(k) = v|k|, wherev = vFe

−2ϕ .
The bosonized form ofH ′ looks as follows [1]:

H ′ = 1

12πm

∫
dx
(
: (∂x8R)

3 : − : (∂x8L)
3 :
)

(3)

where the colons mean boson normal ordering. After substitution of (2) in (3), we obtain
the Hamiltonian

H ′ =
∫

dk1

2π

dk2

2π

dk3

2π
V (k1, k2, k3)

{(
bk1b

†
k2
b
†
k3
δ(k1− k2− k3)

+ (all permutations ofk1, k2, k3)
)
+ bk1bk2bk3δ(k1+ k2+ k3)+ h.c.

}
(4)

which describes triple collisions between excitations. The vertex is

V (k1, k2, k3) = 1

6m

k1k2k3

|k1k2k3|1/2
{∏

i

(
θ(ki) coshϕ − θ(−ki) sinhϕ

)
− (ki →−ki)

}
(i = 1, 2, 3). (5)

We restrict our analysis to the case ofNR = NL = 0. However, as it is pointed out
in [1], the state|NR = NL = 0〉 is not the ground one, since the Hamiltonian of the
uniform density fluctuations is unstable. In order to guarantee stability, one has to take into
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account the fourth-order interaction originating from the next term in the expansion of the
single-electron spectrum, which has the form

H
(4)
int = (β/96πm2vF)

∫
dx{: (∂x8R)

4 : − : (∂x8L)
4 :}.

At β > 3/4, the ground state is|NR = NL = 0〉 [1]. We assume that the conditions
of stability are satisfied. Since the fourth-order vertex contains higher powers ofk, its
contribution to the decay rate is small compared with that from the cubic interaction.
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Figure 1. Diagrams for the self-energy function corresponding to three different channels
of damping bosonic excitations: (a) spontaneous decay, (b) three-wave annihilation and (c)
absorbtion of another excitation. Arrowed lines correspond to the Green functions of Luttinger
bosons.

We are now in a position to calculate the damping of interacting excitations by the
standard means of quantum field theory. The exact thermodynamic Green function of
Luttinger bosons has the form:

G(k, ωn) = 1

iωn − v|k| −6(k, ωn) (ωn = 2πnT ). (6)

The self-energy function6 is given by the sum of the three diagrams in figure 1. After
analytical continuation6(k, ωn)→ 6R(k, ω) = −i0k,ω (0 > 0), we obtain a self-consistent
equation for the function0:

0k,ω =
18
∫ ∞
−∞

dk1

2π

dω1

2π

{
V 2(k, k1, k−k1)

(
coth

ω1

2T
+coth

ω−ω1

2T

)
ImGR(k1, ω1)ImGR(k−k1, ω−ω1)

−V 2(k, k1,−k − k1)

(
coth

ω1

2T
− coth

ω + ω1

2T

)
ImGR(k1, ω1)ImGR(−k − k1,−ω − ω1)

+2V 2(k, k1, k + k1)

(
coth

ω1

2T
− coth

ω + ω1

2T

)
ImGR(k1, ω1)ImGR(k + k1, ω + ω1)

}
(7)

where

ImGR(k, ω) = − 0k,ω

(ω − v|k|)2+ 02
k,ω

. (8)
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We are interested in calculation of the damping of bosonic excitations at the mass shell,
which is denoted asγk = 0k,ω=v|k|. In the second-order perturbation theory this quantity is
infinite. Indeed, if we substitute in equation (7) the bare Green functions instead of the exact
ones, which amounts to replacing ImGR

0 (k, ω)→−πδ(ω− v|k|), then0(0)k,ω ∼ δ(ω− v|k|)
andγk = ∞. Thus, we have to solve the problem self-consistently. One might expect that
as a result of self-consistent treatment theδ-function singularity is rounded off, so that we
assume the following form of solution:

0k,ω = γkf
(
�

γk

)
(9)

where� = ω−v|k|. Functionf (x) has a peak nearx = 0 (f (0) = 1) and quickly vanishes
at x →∞.

We start with the case ofT = 0. Let k > 0, then we split the range of integration over
k1 on the right-hand side of equation (7) and retain only the most singular contributions,
whose denominators go to zero fastest of all (as(ω1 − vk1)

4) whenω = vk and0 → 0.
The result is

γk = 36
∫ k

0

dk1

2π

∫ vk

0

dω1

2π
V 2(k, k1, k − k1)

0k1,ω1

(ω1− vk1)2+ 02
k1,ω1

0k−k1,vk−ω1

(ω1− vk1)2+ 02
k−k1,vk−ω1

−72
∫ ∞

0

dk1

2π

∫ 0

−vk

dω1

2π
V 2(k, k1, k + k1)

0k1,ω1

(ω1− vk1)2+ 02
k1,ω1

0k+k1,vk+ω1

(ω1− vk1)2+ 02
k+k1,vk+ω1

.

The function ofω1 in the integrand has a sharp peak nearω1 = vk1, which is situated
outside the range of integration overω1 in the second term, so that this term can be safely
neglected. This fact has a simple physical interpretation: atT = 0 there is no excitation in
the system, so that the only contribution to the decay rate is due to spontaneous decay (see
figure 1(a)). In the first term, it is possible to extend the limits of integration overω1 to
infinity. Using (9), we obtain:

γk = 36
∫ k

0

dk1

2π
V 2(k, k1, k − k1)

∫ ∞
−∞

d�1

2π

γk1f
(
�1/γk1

)
�2

1+ γ 2
k1
f 2
(
�1/γk1

) γk−k1f
(
�1/γk−k1

)
�2

1+ γ 2
k−k1

f 2
(
�1/γk−k1

)
(10)

where�1 = ω1 − vk1. We seek a solution of equation (10) in the formγk = A|k|α.
Substituting (5) and introducing new variablesx = k1/k and y = �1/γk1, we obtain
A2k2α = λ2k4I1(α) where

λ = 1

2πm

(
1+ 2U0

πvF

)−3/4(
1+ 3U0

2πvF

)
(11)

and

I1(α) =
∫ 1

0

x dx

(1− x)α−1

∫ ∞
−∞

dy
f (y)

y2+ f 2(y)

f (Y )

Y 2+ f 2(Y )

Y = y(x/1− x)α. Therefore,α = 2 and, finally

γk(T = 0) = c1|λ|k2 (12)

wherec1 = I 1/2
1 (2) is a numerical coefficient, which can be calculated only if the whole

function f (x) is known. However, the dependence ofγk on the wave number, which is
of the most interest for us, is insensitive to the precise form off (x). Note that, as seen
from (5) and (11), Luttinger bosons interact with each other and, therefore, have a finite
lifetime atU0 = 0. The reason is that they are not exact eigenstates of the system, unless
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the single-electron spectrum is linear. Indeed, since the operatorsb
†
k, bk are directly related

to the right and left fermion density operatorsρR(L)(k) =
∑

p c
†
R(L),p+kcR(L),p [1, 2], the

bosonic excitations are linear combinations of electron–hole pairs with total momentumk

and energyεp(k) = εp+k − εp. In contrast to the linearized case, whereεp(k) = vFk, in the
case of non-linear band dispersionεp(k) depends onp, so that the excited states created
by b†k are made up of pairs with different energies and thus cannot be eigenstates of the
non-interacting Hamiltonian.

At T 6= 0, the main contributions come from the long-wavelength excitations, so
that one can replace the Bose–Einstein functions by the Rayleigh–Jeans distribution:
coth(ω/2T ) → 2T/ω (it is assumed thatvk � T ). Proceeding as before, we retain
only the most singular atω = vk and0 → 0 terms on the right-hand side of (7), replace
ω1→ vk1 in the arguments of the distribution functions, assume thatγk = A|k|α, and end
up with the equationA2k2α = λ2(T /v)k3I2(α), whereλ is given by (11) and

I2(α) =
∫ 1

0

dx

(1− x)α
∫ ∞
−∞

dy
f (y)

y2+ f 2(y)

f (Y−)
Y 2− + f 2(Y−)

+ 2
∫ ∞

0

dx

(1+ x)α

×
∫ ∞
−∞

dy
f (y)

y2+ f 2(y)

f (Y+)
Y 2+ + f 2(Y+)

Y± = y(x/1± x)α. Therefore,α = 3/2 so that

γk(T ) = c2|λ|
√
T

v
|k|3/2 (13)

where c2 = I
1/2
2 (3/2). Thus, the decay rate is found to depend non-analytically on

the coupling constant, temperature and wave number. Atvk � T the long-wavelength
excitations in Luttinger liquid can be considered as classical waves. Since thek-dependence
of equation (5) is the same as that of the phonon interaction vertex in conventional
hydrodynamics [11], it is not surprising that the decay rate of Luttinger bosons has the
sameT - andk-dependences as the sound attenuation in 1D classical liquids [12].

In the case of long-range interaction, the non-linearity of the dispersion of 1D
plasmons prevents the laws of energy and momentum conservation from being satisfied
simultaneously. Although the decay rate is zero in the second-order perturbation theory, it
is not in higher orders, so that we do not expect any peculiar behaviour in this case. As
for the contribution toγk from impurity scattering, it is proportional tok2 and does not
depend on temperature [13]. In real situations, the finite-size effects should also be taken
into account. In the case of spin-1/2 fermions, it turns out that the spin–charge separation
[2] is broken down by a non-zero band curvature, so that the spin and charge density waves
interact with each other and acquire a finite lifetime. This case will be considered in a
separate publication [14].

A non-analytical behaviour of the decay rate would manifest itself, for example, in
a peculiarT - or k-dependence of the peaks in the dynamic structure factorS(k, ω) =
2(1 − e−ω/T )−1ImKR(k, ω) [15], which can be measured directly in Raman scattering
experiments. The density correlation functionKR is

KR(k, ω) = vF

π

k2

v2k2− (ω + i0k,ω)2
. (14)

The peaks inS(k, ω) at ω = v|k| have a finite width of the order ofγk(T ) with
magnitude proportional toT 1/2k−3/2. Although the results of, e.g., inelastic light-scattering
measurements in GaAs quantum wires [16] agree with the predictions of the perturbative
RPA-based approach, one cannot rule out unambiguously the possibility of a non-analytical
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dependence of the peak intensity on the basis of available experimental data. It is an open
question, whether 1D electrons in real quantum wires form a Luttinger liquid, or can still be
described within the Fermi liquid theory. Experimental discovery of the peculiar behaviour
of the damping of collective excitations would be strong evidence in favour of the Luttinger
liquid picture.

To summarize, we have presented a self-consistent calculation of the lifetime of bosonic
excitations in a clean Luttinger liquid with short-range interaction, the most noticeable
feature being its non-analytical dependence on the coupling constant (atT = 0) and the
wave number and temperature (atT 6= 0).

The author would like to thank F Hekking and I Smolyarenko for useful discussions. This
work was financially supported by the EPSRC (Grant No RG 22473).
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